Suppletion in nanosyntax

Karen De Clercq FWO/U Gent

Geneva, Université de Genève 21 November 2019

Table of Contents

Introduction

Degree morphology: Czech and English comparatives (with Pavel Caha and Guido Vanden Wyngaerd)

Czech regular comparative degree morphology

Portmanteau suppletion: pointers

Root suppletion

Degree morphology: Latin superlatives (with G. Vanden Wyngaerd

Degree morphology meets negation (with G. Vanden Wyngaerd and Pavel Caha)

Roots and suppletion in DM and nano

Conclusion

Suppletion

Two types:

- Portmanteau suppletion (1a)
- Root suppletion (1b)

(1)		Pos	CMPR	Sprl
	a.	bad	worse	worst
	b.	good	bett-er	be(t)-st

- Portmanteau suppletion: phrasal spellout (cf. class 1)
- ► Root suppletion can be accounted for if CPMR and SPRL are split up.

Table of Contents

Introduction

Degree morphology: Czech and English comparatives (with Pavel Caha and Guido Vanden Wyngaerd)

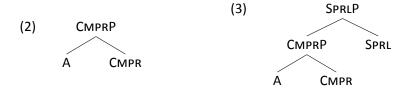
Czech regular comparative degree morphology

Portmanteau suppletion: pointers

Root suppletion

Degree morphology: Latin superlatives (with G. Vanden Wyngaerd

Degree morphology meets negation (with G. Vanden Wyngaerd and Pavel Caha)


Roots and suppletion in DM and nano

Conclusion

Containment Hypothesis

'The representation of the superlative properly contains that of the comparative' (Bobaljik 2012: 4)

Morphological evidence

	Pos	CMPR	Sprl	
Persian	kam	kam- <mark>tar</mark>	kam- <mark>tar</mark> -in	'little'
Cimbrian	šüa	šüan- <mark>ar</mark>	šüan-ar-ste	'pretty'
Czech	mlad-ý	mlad- <mark>ší</mark>	nej-mlad- <mark>ší</mark>	'young'
Hungarian	nagy	nagy- <mark>obb</mark>	leg-nagy- <mark>obb</mark>	'big'
Latvian	zil-ais	zil- <mark>âk</mark> -ais	vis-zil- <mark>âk</mark> -ais	'orange'
Ubykh	nüs ^w ə	ç'a -nüs ^w ə	a- <mark>ç'a</mark> -nüs ^w ə	'pretty'

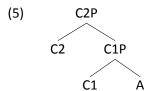
CSG

Comparative-Superlative Generalisation

When the comparative has a suppletive form, the superlative will also be suppletive, and vice versa (Bobaljik 2012: 29-30).

CSG

Comparative-Superlative Generalisation

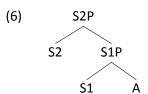

When the comparative has a suppletive form, the superlative will also be suppletive, and vice versa (Bobaljik 2012: 29-30).

- (4) ABB good better best
 - *ABA good better goodest
 - *AAB good gooder best

Cmpr = C1 + C2

Claim 1

the Cmpr head is to be split up into two distinct heads, C1 and C2


Evidence comes from Czech

- regular degree morphology
- root suppletion in degree morphology

$$SPRL = S1 + S2$$

Claim 2

the SPRL head is to be split up into two distinct heads, S1 and S2

Claim 2: Evidence comes from Latin

- regular degree morphology
- root suppletion in degree morphology

Czech degree morphology

-ějš-

(7)	Pos	CMPR	SPRL	
	červen-ý	červen-ějš-í	nej-červen-ějš-í	'red'
	hloup-ý	hloup-ějš-í	nej-hloup-ějš-í	'stupid'
	moudr-ý	moudř-ejš-í	nej-moudř-ejš-í	'wise'

Regular comparative degree morphology

-ějš-

```
(8) Pos CMPR SPRL
červen-ý červen-ějš-í nej-červen-ějš-í 'red'
hloup-ý hloup-ějš-í nej-hloup-ějš-í 'stupid'
moudr-ý moudř-ejš-í nej-moudř-ejš-í 'wise'
```

í/ý = adjectival agreement: Case, number, gender

4 pieces of evidence showing that -ejš- consists of two parts (ej+s)

- 1. -ěj- disappears with suppletive roots
- 2. -ěj- disappears in cases where the root shortens
- 3. -*ěj* can disappear non-predictably
- 4. -š- disappears with comparative adverbs

1. -ěj- disappears with suppletive roots

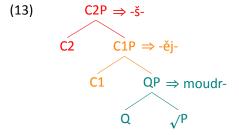
(9)	Pos	CMPR	SPRL	
	dobr-ý	lep-š-í	nej-lep-š-í	'good'
	špatn-ý	hor-š-í	nej-hor-š-í	'bad'
	mal-ý	men-š-í	nej-men-š-í	'little, small'
	velk-ý	vět-š-í	nej-vět-š-í	'big'

2. -*ěj*- disappears in cases where the root shortens

(10)	Pos	CMPR	
	dlouh-ý	del-š-í	'long'
	blízk-ý	bliž-š-í	'close'
	vys-ok-ý	vyš-š-í	'tall'

3. -ěj- can disappear non-predictably

(11)	Pos	CMPR	
	star-ý	star-š-í	ʻold'
	such-ý	suš-š-í	'dry'
	drah-ý	draž-š-í	'expensive'


4. -š- disappears with comparative adverbs

(12)	CMPR ADJ	CMPR ADV	
	červen-ěj-š-í	červen-ěj-i	'redder'
	hloup-ěj-š-í	hloup-ěj-i	'more stupid'
	moudř-ej-š-í	moudř-ej-i	'wiser'

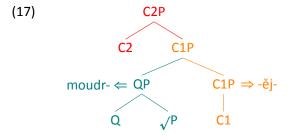
Preliminary Conclusion

The regular comparative suffix consists of two parts: ěj+š

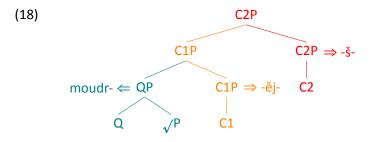
The Czech regular comparative

The lexicon

```
(14) a. </moudr-/, [_{QP} Q [_{\sqrt{P} \sqrt{}}]], wise > b. </-\check{e}_{j-}/, [_{C1P} C1] > c. </-\check{e}_{j-}/, [_{C2P} C2] >
```


The derivation-1

(15) C1P


C1 QP
$$\Rightarrow$$
 moudr-
Q \sqrt{P}
\sqrt{P} $\sqrt{ }$]], WISE >

The derivation-2 (spellout-driven movement)

The derivation-3

The derivation-4

The decomposition explains

1. why -ěj- disappears with suppletive roots

- -ěj- spells out the C1 feature
- if the suppletive root spells out C1, suppletive roots are predicted to be incompatible with -ĕj- in principle

lep- eats up -ěj-

(19)
$$C2P \Rightarrow -\S^{-}$$

$$C1 \qquad C1P \Rightarrow lep-$$

$$Q \qquad QP \Rightarrow dobr-$$

(20) a. $<_{DOBR} / dobr - /, [_{QP} Q [_{\sqrt{P} \sqrt{}}]] >$ b. $<_{LEP} / lep - /, [_{C1P} C1 DOBR]] >$ c. $< / - ej - /, [_{C1P} C1] >$ d. < else / - else /

Faithfulness Restriction

- ► lexical insertion at the level of the √ is determined by Free Choice
- Cyclic override of roots respects a Faithfulness Restriction
- (21) Faithfulness Restriction (FR)

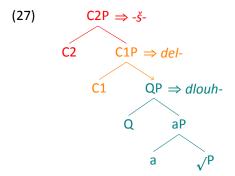
A spellout α may overwrite an earlier spellout β iff

- a. α contains a pointer to β
- b. $\alpha = \beta$

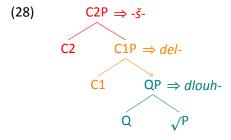
Pointers (I)

(22)
$$VP \Leftrightarrow /-/$$
, CHAT shoot DP the breeze

Pointers (II)


(25) a. </br/>
/bring/, [$_{VP}$ V], BRING >

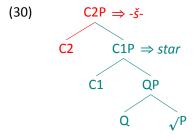
b. </br/>
/brought/, [$_{T_{PST}P}$ T $_{PST}$ BRING], BRING >


The decomposition explains

- 1. why -*ěj* disappears with suppletive roots
- 2. why -ěj- disappears in cases where the root shortens

⇒ shortened roots (like suppletive roots) spell out C1P

(26) a.
$$<_{DLOUH}$$
 /dlouh-/, [QP Q [$_{\sqrt{P}}$ $_{\sqrt{}}$]] > b. $<_{DEL}$ /del-/, [C1P C1 DLOUH]] >


The decomposition explains

- 1. why -*ěj* disappears with suppletive roots
- 2. why -*ěj* disappears in cases where the root shortens
- 3. why -ej- can disappear non-predictably

⇒ the relevant lexical items spell out C1P

(29)
$$$$

► the difference between these adjectives and the ones that do take -ĕj-š- is a matter of lexical idiosyncrasy

alternation is morphological

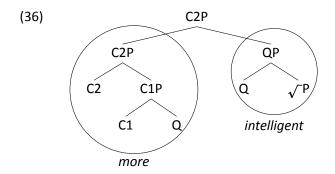
(31)	Pos	CMPR		
	bohat-ý	bohat-š-í	'rich'	PAL _V
	kulat-ý	kulat-ěj-š-í	'round'	PAL_{VAL}
	star-ý	star-š-í	ʻold'	PAL _V
	bujar-ý	bujar-ěj-š-í	'merry'	PAL_{VAL}

Language variation

(32)	POS	CMPR	SPRL
	wise	wis-er	wis-est
	moudr-ý	moudř-ej-š-í	nej-moudř-ej-š-í

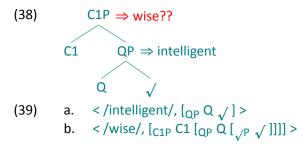
(33)	$\sqrt{}$	Q	C1	C2
	b	ujar	ěj	Š
	star		Š	
	inte	lligent	mo	re
		old		er

the difference between Czech and English is entirely located in the size of the lexically stored trees


English I

(34)
$$C2P \Rightarrow -er$$

$$C1 \qquad QP$$


$$Q \qquad \sqrt{}$$
(35) a. \sqrt{P} $\sqrt{}$]]]] > b.

English II

(37) a.
$$$$

b. $$

Faithfulness Restriction

- (40) Faithfulness Restriction (FR)A spellout α may overwrite an earlier spellout β iff
 - a. α contains a pointer to β
 - b. $\alpha = \beta$

Spellout algorithm

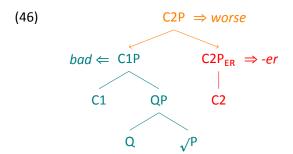
Starke (2018)

- (41) Merge F and
 - a. Spell out FP
 - If (a) fails, attempt any of the rescue strategies below (in the order given), and retry (a), until spellout is successful
 - (i) move the spec of the complement of F
 - (ii) move the complement of F
 - (iii) start a new derivation by merging F with the last successfully spelled out feature, i.e. F^{-1} .

(42)
$$\begin{array}{c} \text{C1P} \\ \text{intelligent} \leftarrow \text{QP} \\ \text{Q} \\ \text{C1} \end{array} \Rightarrow ?$$

Spellout algorithm

Starke (2018)

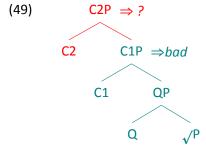

- (44) Merge F and
 - a. Spell out FP
 - If (a) fails, attempt any of the rescue strategies below (in the order given), and retry (a), until spellout is successful
 - (i) move the spec of the complement of F
 - (ii) move the complement of F
 - (iii) start a new derivation by merging F with the last successfully spelled out feature, i.e. F^{-1}

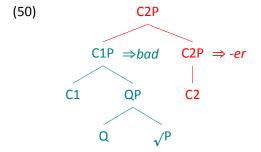
Portmanteau suppletion

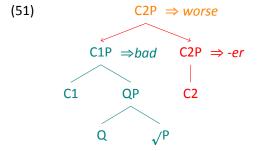
```
(45) a. <_{WORSE} /Worse/, [_{C2P} BAD ER] > b. <_{BAD} /bad/, [_{C1P} C1 [_{QP} Q _{\sqrt{P}}]] > c. < /-er/, [_{C2P} C2] >
```

Portmanteau suppletion

```
(45) a. <_{WORSE} /worse/, [C2P BAD ER] > b. <_{BAD} /bad/, [C1P C1 [QP Q \sqrt{P}]] > c. < /-er/, [C2P C2] >
```




(47)
$$bad \Leftarrow C1P$$


$$C1 \qquad QP_{BAD}$$

$$Q \qquad \sqrt{P}$$

(48)
$$\leq_{BAD}$$
 /bad/, [C1P C1 [QP Q \sqrt{P}]] >

Root suppletion: better

(53) a.
$$<_{GOOD}/good/, [QP Q [aP a [\sqrt{P} \sqrt{]}]] >$$

b. $<_{BETT}/bett-/, [C1P C1 GOOD]] >$

Table of Contents

Introduction

Degree morphology: Czech and English comparatives (with Pavel Caha and Guido Vanden Wyngaerd)

Czech regular comparative degree morphology

Portmanteau suppletion: pointers

Root suppletion

Degree morphology: Latin superlatives (with G. Vanden Wyngaerd

Degree morphology meets negation (with G. Vanden Wyngaerd and Pavel Caha)

Roots and suppletion in DM and nano

Conclusion

Latin regular degree morphology

CMPR

- ► -ior/iōr
- -ius (for nominative singular neuter)

SPRL

- -issimus
- ⇒ Comparative and superlative show agreement with the noun

Agreement markers of the first declension class

		SG		PL	
		'high(est)'	'rose'	'high(est)'	'rose'
SG	NOM	alt-(issim-)a	ros-a	alt-(issim-)ae	ros-ae
	ACC	alt-(issim-)am	ros-am	alt-(issim-)ās	ros-ās
	GEN	alt-(issim-)ae	ros-ae	alt-(issim-)ārum	ros-ārum
	DAT	alt-(issim-)ae	ros-ae	alt-(issim-)īs	ros-īs
	ABL	alt-(issim-)ā	ros-ā	alt-(issim-)īs	ros-īs

Agreement markers of the second declension class

		MASC		NEUT	
		'high(est)'	'grandpa'	'high(est)'	'gift'
SG	NOM	alt-(issim-)us	av-us	alt-(issim-)um	dōn-um
	ACC	alt-(issim-)um	av-um	alt-(issim-)um	dōn-um
	GEN	alt-(issim-)ī	av-ī	alt-(issim-)ī	dōn-ī
	DAT	alt-(issim-)ō	av-ō	alt-(issim-)ō	dōn-ō
	ABL	alt-(issim-)ō	av-ō	alt-(issim-)ō	dōn-ō
PL	NOM	alt-(issim-)ī	av-ī	alt-(issim-)a	dōn-a
	ACC	alt-(issim-)ōs	av-ōs	alt-(issim-)a	dōn-a
	GEN	alt-(issim-)ōrum	av-ōrum	alt-(issim-)ōrum	dōn-ōrum
	DAT	alt-(issim-)īs	av-īs	alt-(issim-)īs	dōn-īs
	ABL	alt-(issim-)īs	av-īs	alt-(issim-)īs	dōn-īs

Agreement markers of the third declension class

		M, F		NEUT	
		'higher'	'king'	'higher'	'noun'
SG	NOM	alt-ior	rēx	alt-ius	nōmen
	ACC	alt-iōr-em	rēg-em	alt-ius	nōmen
	GEN	alt-iōr-is	rēg-is	alt-iōr-is	nōmin-is
	DAT	alt-iōr-ī	rēg-ī	alt-iōr-ī	nōmin-ī
	ABL	alt-iōr-e	rēg-e	alt-iōr-e	nōmin-e
PL	NOM	alt-iōr-ēs	rēg-ēs	alt-iōr-a	nōmin-a
	ACC	alt-iōr-ēs	rēg-ēs	alt-iōr-a	nōmin-a
	GEN	alt-iōr-um	rēg-um	alt-iōr-um	nōmin-um
	DAT	alt-iōr-ibus	rēg-ibus	alt-iōr-ibus	nōmin-ibus
	ABL	alt-iōr-ibus	rēg-ibus	alt-iōr-ibus	nōmin-ibus

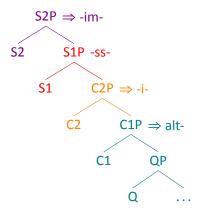
Latin comparative

Two options:

- 1. -ior/-iōr
 - gets overwritten by -ius in neuter NOM.SG and ACC.SG (=traditional view)
- 2. -i
- -or/-ōr/-us spells out an agreement complex

Evidence in favour of comparative -i:

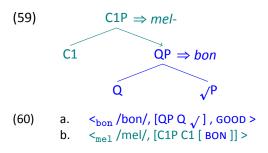
- agreement complex in comparative differs from positive and superlative degree
 - -or/-or is a spellout of the declension class feature
- ▶ genitive plural: -ōrum in first declension, -um in third and fourth
 - ► -ōr in -ōr-um is declension marker, -um is genitive plural
- ► *i* is now properly contained in superlative *i*-ssimus

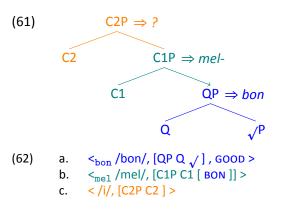

Latin superlative -ssim(us)

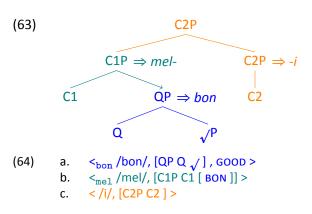
- -us spells out agreement complex
- -issim can be split up in -ss- and -im-
- evidence from:
- 1. adjectives with root suppletion

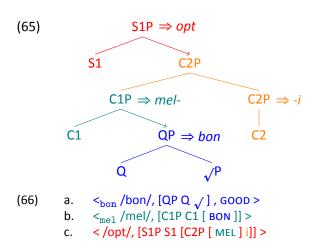
(54)	POS	CMPR	SPRL	
	bonus	mel-i-or	opt-im-us	'good'
	parvus	min-or	min-im-us	'small'
	paucus	min-or	min-im-us	'little'
	multus	plūs	plūr-im-us	'much'
	malus	pē-j-or	pe-ss-im-us	'bad'

- -ss is absent (but see pessimus)
- only melior and pejor have comparative -i


Derivation of a regular comparative and superlative

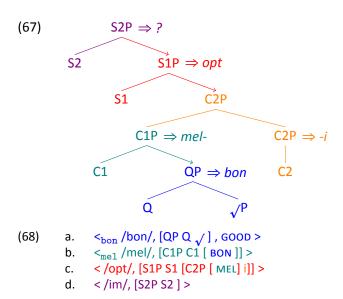


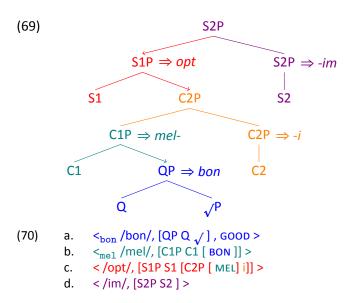

```
(55) a. </alt/, [C1P [QP Q √
]], HIGH >
b. </ii/, [C2P C2] >
```

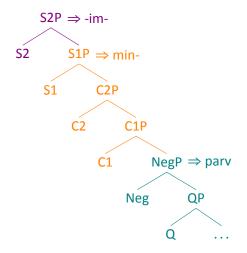

- c. </ss/, [S1P S1] >
- d. </im/, [S2P S2] >

(56) bonus - melior - optimus
(57)
$$QP \Rightarrow bon$$

 $Q \qquad \sqrt{P}$
(58) $<_{bon}/bon/, [QP Q \sqrt{]}, GOOD >$






Derivation of suppletive forms, ABC

Derivation of suppletive forms, ABC

The derivation of suppletive ABB

(71) a. <parv/, [NegP Neg [QP Q $\sqrt{\ }$], SMALL> b. <min/min/, [S1P S1 [C2P C2 [C1P C1 [PARV]]]]>

ABA cannot be derived

(72) a. bon-us mel-i-or bon-im-us b. bon-us mel-i-or bon-i-ss-im-us

Table of Contents

Introduction

Degree morphology: Czech and English comparatives (with Pavel Caha and Guido Vanden Wyngaerd)

Czech regular comparative degree morphology

Portmanteau suppletion: pointers

Root suppletion

Degree morphology: Latin superlatives (with G. Vanden Wyngaerd

Degree morphology meets negation (with G. Vanden Wyngaerd and Pavel Caha)

Roots and suppletion in DM and nano

Conclusion

Case study II: Degree morphology meets negation

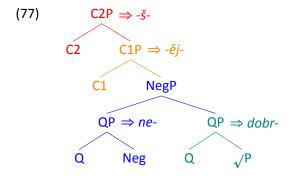
Support from suppletion in the comparative for:

- the presence of [Neg] in negative adjectives
- the distinction between the two low scope negative markers,
 Class_{Neg} and Q_{Neg} in the fseq

A minimal contrast

(73)	POS	CMPR	
	dobr-ý	lep-š-í	'good'
	ne-dobr-ý *	ne-lep-š-í	'bad'
		ne-dobř-ej-š-í	
	mal-ý	men-š-í	'small'
	ne-mal-ý	ne-men-š-í	'big, not small'
	*	ne-mal-š-í	

ne-dob'r-ej-'s-'i has – theoretically speaking – 2 possible bracketings:


- (74) a. [MORE [NOT good]]
 - b. [NOT [MORE good]]

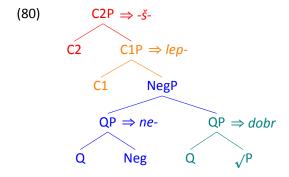
ne-dobř-ej-š-í has – theoretically speaking – 2 possible bracketings:

- (74) a. [MORE [NOT good]]
 - b. [NOT [MORE good]]
 - these bracketings correspond with two readings
 - the readings are distinguished in contexts where A and B are equally bad
 - only (74b) can describe such a situation.

- (75) A is ne-dobř-ejš-í than B.
 - this is incompatible with a situation where A and B are equally bad
 - ▶ the structure (74a)/(76) is correct for ne-dobř-ejš-í
- (76) [-ejš-[ne-[dobr]]]

ne-dobř-ejš-í

lep-š-í


(78)
$$C2P \Rightarrow -\check{s}-$$

$$C1 \qquad QP \Rightarrow dobr-$$

$$Q \qquad \sqrt{P}$$

$$C9) \qquad a. \qquad <_{GOOD} / dobr-/, [_{QP} Q [_{\sqrt{}}] > b. \qquad <_{BETT} / [_{C1P} C1 DOBR]] > b.$$

*ne-lep-š-í

- if NegP intervenes between C1P and QP, lep- can no longer spell out C1P
- this is because the syntactic tree now contains a feature Neg between C1 and Q
- as a result, C1P contains a Neg feature, which is not part of the lexical makeup of lep-
- as a result, lep- cannot spell out C1P
- ▶ in contrast, there is no problem with ne-dobř-ej-š-í: each exponent spells out a constituent in the syntactic tree

ne-men-š-í

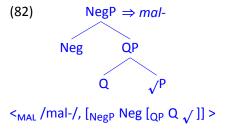
(81)	POS	CMPR	
	mal-ý	men-š-í	'small'
	ne-mal-ý	ne-men-š-í	'not small, big'
	ne-mal-ý	*ne-mal-ej-š-í	

ne-men-š-í

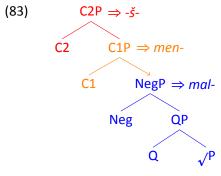
(81)	POS	CMPR	
	mal-ý	men-š-í	'small'
	ne-mal-ý	ne-men-š-í	'not small, big'
	ne-mal-ý	*ne-mal-ej-š-í	

- the suppletion is unexpected
- the meaning is different!

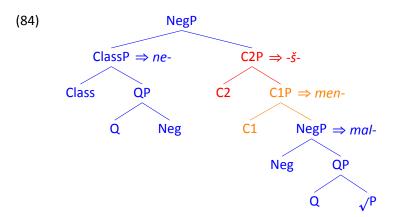
ne-men-š-í


(81)	POS	CMPR	
	mal-ý	men-š-í	'small'
	ne-mal-ý	ne-men-š-í	'not small, big'
	ne-mal-ý	*ne-mal-ej-š-í	

- the suppletion is unexpected
- the meaning is different!


ne-men-š-í

- = [not [more small]]
- = not smaller
- = compatible with a situation where A and B are equally big


mal-ý spells out a Neg feature

men-š-í

$$<_{MEN}$$
 /men-/, [C1P C1 MAL]] > $<_{\xi}$ /- $\dot{\xi}$ -/, [C2P C2] >

- because the low Neg position is already taken up by men/mal, the ne-prefix has to take scope in a higher position, most probably ClassP.
- ► (84) has the bracketing [NOT [MORE [small]]]
- this bracketing accounts for the meaning of ne-men-š-í 'not smaller' (A and B can be equally big)
- ▶ it also accounts for the presence of root suppletion

Table of Contents

Introduction

Degree morphology: Czech and English comparatives (with Pavel Caha and Guido Vanden Wyngaerd)

Czech regular comparative degree morphology

Portmanteau suppletion: pointers

Root suppletion

Degree morphology: Latin superlatives (with G. Vanden Wyngaerd

Degree morphology meets negation (with G. Vanden Wyngaerd and Pavel Caha)

Roots and suppletion in DM and nano

Conclusion

Suppletion in DM

- root suppletion: contextual allomorphy
- portmanteau suppletion: contextual allomorphy + fusion

Root Suppletion = contextual allomorphy

(87) a.
$$\sqrt{\text{GOOD}} \rightarrow be(tt) - /$$
] CMPR]
b. $\sqrt{\text{GOOD}} \rightarrow good$

Root suppletion in Czech

Root suppletion in Czech

(88) C2P

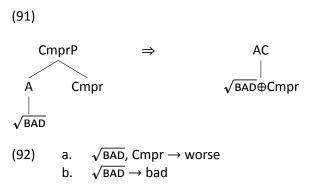
C1P C2

A C1

$$\downarrow$$
 \sqrt{GOOD}

(89) a. $\sqrt{GOOD} \rightarrow dobr$
b. $\sqrt{GOOD} \rightarrow lep$ -/] C1]

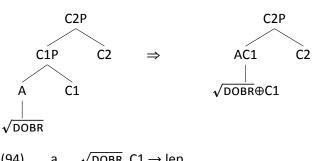
(90) a. C1 $\rightarrow ej$
b. C1 $\rightarrow \phi$ / lep]


c. $C2 \rightarrow \check{s}$

Root suppletion in Czech

(90) a.
$$C1 \rightarrow \check{e}j$$

b. $C1 \rightarrow \emptyset / lep]$
c. $C2 \rightarrow \check{s}$


- a rule like (90b) must be duplicated for each suppletive root
- nothing in principle prevents the existence of suppletive roots with -ĕj-: Czech could have (89), and at the same time lack (90b)
- there is no principled explanation for the systematic absence of -ěj- with suppletive (and shortened) roots

Portmanteau suppletion = Fusion + contextual allomorphy

Alternative for Czech: lep analyzed like portmanteau suppletion

(93)

- (94)
- $\sqrt{\text{DOBR}}$, C1 \rightarrow lep
- $\sqrt{\text{DOBR}} \rightarrow \text{dobr}$
- c. $C1 \rightarrow \check{e}j$
- $C2 \rightarrow \check{s}$ d.

The Good

lep lexically contains C1, therefore no spellout for C1 as -ĕj- is needed.

The Good

lep lexically contains C1, therefore no spellout for C1 as -ĕj- is needed.

The Bad

to derive the principled incompatibility of -ĕj- with suppletive roots, the Fusion derivation must be chosen over the contextual allomorphy derivation.

The Good

lep lexically contains C1, therefore no spellout for C1 as -ĕj- is needed.

The Bad

to derive the principled incompatibility of -ĕj- with suppletive roots, the Fusion derivation must be chosen over the contextual allomorphy derivation.

The Ugly

a timing paradox arises (Caha 2018).

The Paradox

- Fusion < Lexical insertion</p>
- Fusion must apply in all and only those cases where a portmanteau morpheme is available:
 - ► lep- 'good'
 - ▶ del- 'long'
 - ► star- 'old'
- the rules manipulating the structure (like Fusion) must know what the lexicon contains, in advance of lexical insertion

The Paradox

- Fusion < Lexical insertion</p>
- Fusion must apply in all and only those cases where a portmanteau morpheme is available:
 - ► lep- 'good'
 - ▶ del- 'long'
 - ► star- 'old'
- the rules manipulating the structure (like Fusion) must know what the lexicon contains, in advance of lexical insertion

The Solution

 Give up the assumption that lexical insertion can only take place at terminals (Radkevich 2010).

DM and the problem of the root

- If syntax precedes lexical insertion, then actually roots should be phonology free.
- ► There is only one √
- ightharpoonup has no grammatical, phonological, or semantic properties
- Halle and Marantz (1993); Marantz (1996; 1997); De Belder and Van Craenenbroeck (2015)

Problem to account for suppletion

(95) a.
$$\sqrt{\quad} \Leftrightarrow \begin{array}{c} bett-/_ \] \ a \] \ \text{CMPR} \]$$
 b. $\sqrt{\quad} \Leftrightarrow \begin{array}{c} good \end{array}$

Problem to account for suppletion

(95) a.
$$\sqrt{\quad \Leftrightarrow \quad bett-/\ } \] \ a \] \ CMPR \]$$
 b. $\sqrt{\quad \Leftrightarrow \quad good}$

(96) The Elsewhere Condition forces a contextually-restricted allomorph (95a) to block insertion of a context-free allomorph of the same root (95b), when the context for insertion is met (Bobaljik 2012: 10)

► But now **every** √ will be realised as **bett**- in the comparative!

Solution

There is an infinity of different $\sqrt{\ }$ s, individuated through numerical indices (Pfau 2000; 2009; Harley 2014)

(98) a.
$$\sqrt{\text{GOOD}} \iff bett-/__] a \] \text{ CMPR }]$$
b. $\sqrt{\text{GOOD}} \iff good$

(99) a. $\sqrt{\text{NICE}} \iff nice$
b. $\sqrt{\text{HAPPY}} \iff happy$
c. $\sqrt{\text{SMALL}} \iff small$
d. $\sqrt{\text{INTELLIGENT}} \iff intelligent$
e. $\sqrt{\text{TALL}} \iff tall$
f. ...

Solution

There is an infinity of different $\sqrt{\ }$ s, individuated through numerical indices (Pfau 2000; 2009; Harley 2014)

(98) a.
$$\sqrt{\text{GOOD}} \iff bett-/__] a \] \text{ CMPR }]$$
b. $\sqrt{\text{GOOD}} \iff good$

(99) a. $\sqrt{\text{NICE}} \iff nice$
b. $\sqrt{\text{HAPPY}} \iff happy$
c. $\sqrt{\text{SMALL}} \iff small$
d. $\sqrt{\text{INTELLIGENT}} \iff intelligent$
e. $\sqrt{\text{TALL}} \iff tall$
f. ...

Phonology sneaks in through the back door!

NS and phrasal spellout

- √ ≠ root
- ▶ there is one √
- there is an infinite number of roots, i.e. lexical items spelling out functional structure
- a suppletive form like worse can only be inserted if bad was inserted at a previous cycle (pointers!)

Table of Contents

Introduction

Degree morphology: Czech and English comparatives (with Pavel Caha and Guido Vanden Wyngaerd)

Czech regular comparative degree morphology

Portmanteau suppletion: pointers

Root suppletion

Degree morphology: Latin superlatives (with G. Vanden Wyngaerd

Degree morphology meets negation (with G. Vanden Wyngaerd and Pavel Caha)

Roots and suppletion in DM and nano

Conclusion

Conclusion

- Bobaljik's Cmpr and SPRL needs to be split up into two distinct heads/features, C1 and C2 and S1 and S2
- Czech morphology provides evidence for two distinct exponents corresponding to C1 and C2: ěj+š
- ► Latin morphology provides evidence for two distinct exponents corresponding to S1 and S2: -ss-+im
- we developed an analysis of root suppletion that accounts for the systematic absence of ĕj with suppletive and shortened roots in Czech comparatives
- we developed an analysis of root suppletion that accounts for the systematic absence of -ss in suppletive superlative forms in Latin
- we discussed why a nanoysyntactic account fares better at capturing suppletion than a DM account
- we explained how nanosyntax can keep syntax phonology free and nevertheless capture suppletion

- Bobaljik, J. (2012). Universals In Comparative Morphology. Cambridge, MA: MIT Press.
- Caha, P. (2018). "Notes on insertion in Distributed Morphology and Nanosyntax". In L. Baunaz, K. De Clercq, L. Haegeman and E. Lander, eds., Exploring Nanosyntax, Oxford: Oxford University Press. 57–87.
- De Belder, M. and Van Craenenbroeck, J. (2015). "How to Merge a Root". *Linguistic Inquiry* 46, 625 655.
- Halle, M. and Marantz, A. (1993). "Distributed morphology and the pieces of inflection". In K. Hale and J. Keyser, eds., *The View from Building 20*, Cambridge, MA: MIT Press. 111–176.
- Harley, H. (2014). "On the identity of roots". Theoretical Linguistics 40, 225–276.
- Marantz, A. (1996). "Cat as a phrasal idiom: consequences of late insertion in Distributed Morphology". Ms., MIT.
- Marantz, A. (1997). "No Escape from Syntax: Don't Try Morphological Analysis in the Privacy of your own Lexicon". In A. Dimitriadis, L. Siegel, C. Surek-Clark and A. Williams, eds., University of Pennsylvania Working Papers in Linguistics, University of Pennsylvania. vol. 4, 201–225.
- Pfau, R. (2000). Features and categories in language production. Ph.D. dissertation, Johann Wolfgang Goethe-Universität, Frankfurt am Main.
- Pfau, R. (2009). *Grammar as processor: a distributed morphology account of spontaneous speech errors*. Amsterdam: Benjamins.
- Radkevich, N. (2010). *On Location: The structure of case and adpositions*. dissertation, University of Connecticut, Storrs, CT.
- Starke, M. (2018). "Complex Left Branches, Spellout, and Prefixes". In L. Baunaz, K. De Clercq, L. Haegeman and E. Lander, eds., *Exploring Nanosyntax*, Oxford: Oxford University Press. 239–249.